Butanol has shown potential as an alternative biofuel. It can be obtained through ABE fermentation, which produces 1-butanol, ethanol and acetone. Pervaporation is a potential separation process, since it can be successfully applied to remove trace components such as butanol, which is toxic to the cells. The development of an effective membrane is the limiting factor for this technology. Activated carbon-containing polydimethylsiloxane membranes were prepared by varying the filler content up to 2 wt%. The resulting membranes were characterized for the separation of model solutions with 1-butanol, acetone, ethanol and water by pervaporation. The effects of activated carbon load (0, 1, 2 wt%) and temperature (25, 40, 55ºC) on flux and separation factor were evaluated. The addition of 1 wt% activated carbon increased membrane free volume, changed surface morphology and showed flux of 45 g/m 2 h, with separation factor for 1-butanol of 370, at 55ºC.