Epigenetics is an intrinsic mechanism that alters gene function -not by altering DNA sequences, but by chemically modifying the DNA and chromosomal histone proteins. Epigenetics is involved in genomic imprinting and X-chromosome inactivation in humans, and the failure of this mechanism causes a subset of congenital syndromes and cancers. Until recently, it has been believed that epigenetic modification is stable and that the pattern is faithfully preserved following DNA replication during cell division, leading to stable epigenomic patterns during one's life-time. However, more recent reports of environmental stress altering the epigenomic patterns within a short time frame after birth, followed by alterations in gene expression and phenotype, indicate that epigenetics is not only involved in congenital neurodevelopmental diseases but also in acquired diseases, including pervasive developmental disorders, through gene-environmental interaction. In this review, I introduce the subject of congenital diseases with abnormalities in known epigenetic mechanisms and discuss possible epigenetic abnormalities in pervasive developmental disorders.