In the near future, the digitization and processing of the current paper documents describe efficient role in the creation of a paperless environment. Deep learning techniques for handwritten recognition have been extensively studied by various researchers. Deep neural networks can be trained quickly thanks to a lot of data and other algorithmic advancements. Various methods for extracting text from handwritten manuscripts have been developed in literature. To extract features from written Telugu Text image having some other neural network approaches like convolution neural network (CNN), recurrent neural networks (RNN), long short-term memory (LSTM). Different deep learning related approaches are widely used to identification of handwritten Telugu Text; various techniques are used in literature for the identification of Telugu Text from documents. For automatic identification of Telugu written script efficiently to eliminate noise and other semantic features present in Telugu Text, in this paper, proposes Novel Heuristic Advanced Neural Network based Telugu Text Categorization Model (NHANNTCM) based on sequence-to-sequence feature extraction procedure. Proposed approach extracts the features using RNN and then represents Telugu Text in sequence-to-sequence format for the identification advanced neural network performs both encoding and decoding to identify and explore visual features from sequence of Telugu Text in input data. The classification accuracy rates for Telugu words, Telugu numerals, Telugu characters, Telugu sentences, and the corresponding Telugu sentences were 99.66%, 93.63%, 91.36%, 99.05%, and 97.73% consequently. Experimental evaluation describe extracted with revealed which are textured i.e. TENG shown considerable operations in applications such as private information protection, security defense, and personal handwriting signature identification.