Opportunistic pathogens can linger on surfaces in hospital and building plumbing environments, leading to infections in at-risk populations. Further, biofilm-associated bacteria are protected from removal and inactivation protocols, such as disinfection. Bacteriophages show promise as tools to treat antibiotic resistant infections. As such, phages may also be useful in environmental applications to prevent newly acquired infections. In the current study, the potential of synergies between bacteriophage and chemical disinfection of the opportunistic pathogen
Pseudomonas aeruginosa
was assessed under various conditions. Specifically, surface-associated
P. aeruginosa
was treated with various concentrations of phages (P1 or JG004), chemical disinfectant (sodium hypochlorite or benzalkonium chloride), or combined sequential treatments under three distinct attachment models (spot inoculations, dry biofilms, and wet biofilms). Phages were very effective at removing bacteria in spot inoculation (>3.2 log
10
removal) and wet biofilms (up to 2.6 log
10
removal), while phages prevented regrowth of dry biofilms in the application time. In addition, phage treatment followed by chemical disinfection inactivated more
P. aeruginosa
under wet biofilm conditions better than either treatment alone. This effect was hindered when chemical disinfection was applied first, followed by phage treatment, suggesting additive benefits of combination treatments are lost when phage is applied last. Further, we confirm prior evidence of greater phage tolerance to benzalkonium chloride relative to sodium hypochlorite, informing choices for combination phage-disinfectant approaches. Overall, this paper further supports the potential of using combination phage and chemical disinfectant treatments to improve inactivation of surface-associated
P. aeruginosa
.
Importance
Phages are already utilized in the healthcare industry to treat antibiotic resistant infections, such as on implant-associated biofilms and in compassionate care cases. Phage treatment could also be a promising new tool to control pathogens in the built environment, preventing infections from occurring. This study shows that phage can be combined effectively with chemical disinfectants to improve removal of wet biofilms and bacteria spotted onto surfaces while preventing regrowth in dry biofilms. This has the potential to improve pathogen containment within the built environment and drinking water infrastructure to prevent infections of opportunistic pathogens.