Background: Glioma is one prevalent malignant tumor originates from the central nervous system. Dysregulation of long non-coding RNAs (lncRNAs) has been found to be a molecular signature behind the pathology of a variety of cancers, including glioma. EIF3J antisense RNA 1 (EIF3J-AS1) is a novel lncRNA, whose performance in carcinogenesis has been unfolded. Nevertheless, the role of EIF3J-AS1 has never been investigated in glioma. Methods: qRT-PCR analysis was adopted to evaluate the relative levels of RNAs. In vitro functional assays, including colony formation, EdU, TUNEL and caspase-3/8/9 activity assays were conducted to study the impacts of EIF3J-AS1 on glioma. Dual-luciferase activity assays, RNA pull down assay and RIP assay were performed to elucidate molecular interplay among genes. Results: EIF3J-AS1 was overexpressed in glioma cell lines. Knockdown of EIF3J-AS1 hampered glioma malignant phenotypes. MiR-1343-3p could bind to EIF3J-AS1. Moreover, miR-1343-3p targeted Annexin A11 (ANXA11) in its 3′UTR region. Mechanistically, EIF3J-AS1 relieved ANXA11 from miR-1343-3p silencing in the EIF3J-AS1/miR-1343-3p/ ANXA11 RNA induced silencing complex (RISC), thus eliciting promoting effects on glioma progression. MiR-1343-3p inhibitor and ANXA11 overexpression offset the inhibitory impacts of EIF3J-AS1 silencing on glioma development. Conclusion: EIF3J-AS1/miR-1343-3p/ANXA11 axis significantly affected biological behaviors in glioma, suggesting new therapeutic target for glioma treatment.