The number of studies on drug interactions with cimetidine has increased at a rapid rate over the past 5 years, with many of the interactions being solely pharmacokinetic in origin. Very few studies have investigated the clinical relevance of such pharmacokinetic interactions by measuring pharmacodynamic responses or clinical endpoints. Apart from pharmacokinetic studies, invariably conducted in young, healthy subjects, there have been a large number of in vitro and in vivo animal studies, case reports, clinical observations and general reviews on the subject, which is tending to develop an industry of its own accord. Nevertheless, where specific mechanisms have been considered, these have undoubtedly increased our knowledge on the way in which humans eliminate xenobiotics. There is now sufficient information to predict the likelihood of a pharmacokinetic drug-drug interaction with cimetidine and to make specific clinical recommendations. Pharmacokinetic drug interactions with cimetidine occur at the sites of gastrointestinal absorption and elimination including metabolism and excretion. Cimetidine has been found to reduce the plasma concentrations of ketoconazole, indomethacin and chlorpromazine by reducing their absorption. In the case of ketoconazole the interaction was clinically important. Cimetidine does not inhibit conjugation mechanisms including glucuronidation, sulphation and acetylation, or deacetylation or ethanol dehydrogenation. It binds to the haem portion of cytochrome P-450 and is thus an inhibitor of phase I drug metabolism (i.e. hydroxylation, dealkylation). Although generally recognised as a nonspecific inhibitor of this type of metabolism, cimetidine does demonstrate some degree of specificity. To date, theophylline 8-oxidation, tolbutamide hydroxylation, ibuprofen hydroxylation, misonidazole demethylation, carbamazepine epoxidation, mexiletine oxidation and steroid hydroxylation have not been shown to be inhibited by cimetidine in humans but the metabolism of at least 30 other drugs is affected. Recent evidence indicates negligible effects of cimetidine on liver blood flow. Cimetidine reduces the renal clearance of drugs which are organic cations, by competing for active tubular secretion in the proximal tubule of the kidney, reducing the renal clearances of procainamide, ranitidine, triamterene, metformin, flecainide and the active metabolite N-acetylprocainamide. This previously unrecognised form of drug interaction with cimetidine may be clinically important for both parent drug, and metabolites which may be active.(ABSTRACT TRUNCATED AT 400 WORDS)