Abstract:We investigate the general adjustment of projection-based phase retrieval algorithms for use with saturated data. In the phase retrieval problem, model fidelity of experimental data containing a non-zero background level, fixed pattern noise, or overexposure, often presents a serious obstacle for standard algorithms. Recently, it was shown that overexposure can help to increase the signal-to-noise ratio in AI applications. We present our first results in exploring this direction in the phase retrieval problem,… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.