We discuss the squeezing and statistical properties of the light produced by a coherently driven degenerate three-level laser with a parametric amplifier. We consider the case in which the atoms injected into the cavity are prepared in a coherent superposition of the top and bottom levels and with these levels coupled by the pump mode emerging from the parametric amplifier. It so happens that the presence of the parametric amplifier increases the squeezing and the mean photon number significantly. Furthermore, it is found that the maximum interacavity squeezing is 93% in the presence of the coupling and when the superposition has no contribution (h = 0). On the other hand, the maximum interacavity squeezing turns out to be 94% in the absence of the coupling. This squeezing is due to the parametric amplifier and the superposition. In addition, our calculation shows that one effect of coupling the top and bottom levels is to decrease the mean and the normally-ordered variance of the photon number.