A new method was proposed for simulating the anisotropic surface quality of machined single-crystal silicon. This represents the first time that not only the mechanical properties of silicon, but also the crystal orientation, which is closely linked to the turning process, have been given consideration. In this paper, the crystallographic relationship between machined crystal planes and slip planes involved in ultra-precision turning was analyzed. The elasticity, plasticity, and brittleness properties of silicon in different crystal orientations were calculated. Based on the brittle-ductile transition mechanism of ultraprecision turning of single-crystal silicon, the orientation dependence of the surface quality of (111), (110), and (100) crystal planes were investigated via computer simulation. According to the simulation results, the surface quality of all machined planes showed an obvious crystallographic orientation dependence while the (111) crystal plane displayed better machinability than the other planes. The anisotropic surface properties of the (111) plane resulted from the continuous change of the cutting direction, which causes a change of actual angle between the slip/cleavage plane and machined plane. Anisotropic surface properties of planes (100) and (110) result from anisotropy of mechanical properties and the continuous changes of the cutting direction, causing the actual angle between slip/ cleavage plane and machined plane to change simultaneously. A series of cutting experiments were carried out on the (111) and (100) crystal planes to verify the simulation results. The experimental results showed that cutting force fluctuation features and surface roughness are consistent with the anisotropy characteristics of the machined surface as revealed in simulation studies.