Non-negative matrix factorization (NMF) is a knowledge discovery method that is used for many fields, besides, its variational inference and Gibbs sampling method are also well-known. However, the variational approximation accuracy is not yet clarified, since NMF is not statistically regular and the prior used in the variational Bayesian NMF (VBNMF) has zero or divergence points. In this paper, using algebraic geometrical methods, we theoretically analyze the difference of the negative log evidence (free energy) between VBNMF and Bayesian NMF, and give a lower bound of the approximation accuracy, asymptotically. The results quantitatively show how well the VBNMF algorithm can approximate Bayesian NMF.