The effects of acceptor doping with manganese as either MnO2 or MnNb2O6 (MnN) with CuO on the dielectric, ferroelectric, and piezoelectric properties of PIN‐PMN‐PT ceramics were investigated. The 2% MnNb2O6‐doped PIN‐PMN‐PT (6Pb(Mn1/3Nb2/3)O3‐25Pb(In1/2Nb1/2)O3‐34Pb(Mg1/3Nb2/3)O3‐35PbTiO3) ceramics possessed hard properties such as high coercive field (EC) of 11.7 kV/cm, low dielectric loss (tan δ) of 0.7%, and high electromechanical quality factor (QM) of 1011. These properties were diminished in MnO2‐doped ceramics because of lower oxygen vacancy defect concentration, and exaggerated grain growth resulted in >20 µm grain size. Co‐doping with 2 mol% MnNb2O6 and 0.5 mol% CuO retained hardened properties such as high EC of 9.6 kV/cm, low tan δ of 0.6%, and high QM of 1029. MnNb2O6‐doped and MnNb2O6 + Cu co‐doped ceramics display excellent figures of merit for resonance and off‐resonance applications as well as high energy conversion efficiencies which make them promising candidates for high‐power transducer elements.