Alternative exon splicing and reversible protein phosphorylation of large conductance calcium-activated potassium (BK) channels represent fundamental control mechanisms for the regulation of cellular excitability. BK channels are encoded by a single gene that undergoes extensive, hormonally regulated exon splicing. In native tissues BK channels display considerable diversity and plasticity in their regulation by cAMP-dependent protein kinase (PKA). Differential regulation of alternatively spliced BK channels by PKA may provide a molecular basis for the diversity and plasticity of BK channel sensitivities to PKA. Here we demonstrate that PKA activates BK channels lacking splice inserts (ZERO) but inhibits channels expressing a 59-amino acid exon at splice site 2 (STREX-1). Channel activation is dependent upon a conserved C-terminal PKA consensus motif (S869), whereas inhibition is mediated via a STREX-1 exon-specific PKA consensus site. Thus, alternative splicing acts as a molecular switch to determine the sensitivity of potassium channels to protein phosphorylation.Large conductance calcium-and voltage-activated potassium (BK) 1 channels link intracellular chemical signaling events with the electrical properties of excitable cells in the endocrine, nervous, and vascular systems (1-3). BK channels are further potently modulated by reversible protein phosphorylation (4 -7). In native tissues BK channels display considerable diversity and plasticity in their regulation by reversible protein phosphorylation. For example, cAMP-dependent protein kinase (PKA) phosphorylation activates BK channels in smooth muscle cells and many neurones but inhibits channel activity in endocrine cells of the anterior pituitary (5, 7-11). Furthermore, the direction of channel regulation by PKA can be modified during challenges to homeostasis (9 -11).The pore-forming ␣-subunits of BK channels are derived from a single gene (Slo) that undergoes extensive alternative splicing to produce channels with distinct phenotypes (12-15). Importantly, alternative splicing of the ␣-subunit is dynamically regulated in adults, for example during stress or pregnancy (15, 16). Thus the diversity and plasticity of responses to PKA-dependent protein phosphorylation observed between BK channels in native tissues may result either from differential modulation of alternatively spliced BK channel ␣-subunits (12-15) or through their interaction with different signaling complexes and -subunits (17-19).To address whether BK channel alternative splice variants are differentially regulated by PKA-mediated protein phosphorylation, we have examined the regulation of three mouse (mslo) BK channel variants (20 -22) expressed in HEK293 cells. BK channels are regulated by multiple protein kinase signaling pathways (5,19,23,24). We have thus assayed the functional regulation of BK channel splice variants by directly activating PKA that remains closely associated with the channels in excised inside-out patches.
EXPERIMENTAL PROCEDURESMolecular and Cell Biology-cDNAs encod...