The repertoire of viruses to which research primates are exposed, even in the absence of clinical disease, may contribute to experimental confounding. In this study we examined whether standard specific pathogen-free (SPF) rhesus macaques exposed to a wider spectrum of enzootic viruses and expanded SPF macaques derived to exclude a greater number of viral agents would display alterations in immune activation or immune cell populations. Given the impact of immunophenotype on human immunodeficiency virus (HIV) progression and the importance of the simian immunodeficiency virus (SIV) model for the study of HIV pathogenesis, we elected to additionally examine the impact of SPF status on the capacity of peripheral blood mononuclear cells (PBMCs) to support SIV replication. The expanded SPF group displayed significant immune alterations including increased serum interleukin (IL)-15 and a greater in vitro elaboration of GM-CSF, IL1ra, VEGF, IL-10, IL12/23, and MIP-1b. Consistent with reduced viral antigenic exposure in expanded SPF macaques, decreased CD4 + and CD8 + transitional and effector memory (T EM ) cell populations were observed. Expanded SPF PBMC cultures also demonstrated an increased peak (192.61 ng/ml p27) and area under the curve in in vitro SIV production (1968.64 ng/ml p27) when compared to standard SPF macaques (99.32 ng/ml p27; p = 0.03 and 915.17 ng/ml p27; p = 0.03, respectively). In vitro SIV replication did not correlate with CD4 + T EM cell counts but was highly correlated with serum IL-15 in the subset of animals examined. Findings suggest that an altered immunophenotype associated with the maintenance of primates under differing levels of bioexclusion has the potential to impact the outcome of SIV studies and models for which the measurement of immunologic endpoints is critical.