2021
DOI: 10.21203/rs.3.rs-522947/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Phenotypic Characterization of Hair and Honamli Goats by Using Classification Trees Algorithms and Multivariate Adaptive Regression Splines (Mars)

Abstract: In order to meet the food demand of the increasing world population, it is very important to define the animal breeds and species raised in tropical and subtropical regions and to organize breeding programs for this. Discrimination animal breeds by morphological classification are a widely used method for a century. Although Honamli and Hair goats are very similar to each other morphologically, they can be subjectively distinguished by experienced breeders with some distinctive morphological markers. In the cu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 19 publications
0
1
0
1
Order By: Relevance
“…Some morphological body measurements obtained from hair goat studies conducted in Türkiye are compared in TABLE V [26,27,28]. In all the studied Regions included in TABLE V, the Cyprus domestic Goats are larger than these Goats in both sexes.…”
Section: Effect Of Gender Age and Their Interaction On Body Weight An...mentioning
confidence: 99%
“…Some morphological body measurements obtained from hair goat studies conducted in Türkiye are compared in TABLE V [26,27,28]. In all the studied Regions included in TABLE V, the Cyprus domestic Goats are larger than these Goats in both sexes.…”
Section: Effect Of Gender Age and Their Interaction On Body Weight An...mentioning
confidence: 99%
“…Bu bağlamda vücut ölçüleri, cinsiyet, verim türü, yaş ve ırk gibi önemli faktörlere göre değişiklik göstermektedir (Pesmen ve Yardimci, 2008). Günümüze kadar canlı ağırlık ve vücut ölçüleri arasındaki ilişkiyi yorumlamak amacıyla; kanonik korelasyon (Kara-bacak, Altay, ve Aytekin, 2019) yapay sinir ağları ve çoklu doğrusal regresyon yöntemleri (Akkol, Akilli, ve Cemal, 2017), Stepwise-regresyon yöntemi (Koç ve Akman, 2007), path analizi (Keskin, Dağ, ve Şahin, 2005) bulanık mantık yöntemi (Taşdemir, Ürkmez, ve İnal, 2011;Ameen ve Mikail, 2018), Çok Değişkenli Uyarlanabilir Regresyon Uzanımları (MARS) algoritmaları (Aytekin, Eyduran, Karadas, Aksahan, ve Keskin, 2018), CART, CHAID, Exhaustive CHAID algoritmaları (Altay, 2022) ve Bayesian Regularized Neural Network, Random Forest Regression, Support Vector Regression algoritmaları (Tırınk, 2022) gibi birçok metot kullanılmıştır.…”
Section: Introductionunclassified