Background
Chrysanthemum arcticum, arctic daisy and its two subspecies (Chrysanthemum arcticum subsp. arcticum, Chrysanthemum arcticum subsp. polaré) are the only chrysanthemum species native to North America. A study on species’ variation in morphological and diagnostic traits is important to link morphological traits with previously described single nucleotide polymorphism (SNP) markers, particularly when the genomes are sequenced. The purpose of this study was to establish phenotypic differences and soil conditions among wild C. arcticum and C. a. subsp. arcticum populations, when grown in a uniform environment for two years, for potential linkages with our SNP library. Sixteen quantitative morphological traits and five qualitative morphological traits were investigated for 255 individuals from nine C. arcticum populations and 326 individuals from 21 C. a. subsp. arcticum populations.
Results
In long-day controlled environment, C. arcticum flowering rate was 0% in Year 1, increased to 2.7% in Year 2, while C. a. subsp. arcticum flowering rate was 98.5% in Year 2. Two distinct clusters, distributed by taxonomic classification, were detected by Principal component analysis (PCoA) for 551 individuals from C. arcticum and C. a. subsp. arcticum. Pearson’s correlation coefficient analysis indicated a positive and significant correlation between plant height, flower fresh and dry weights. Flower fresh weights were correlated with Δflower weight, while inflorescence length had showed a negative correlation with leaf number. Soil samples had high Na levels along with heavy metals. Thus, the species are salt-tolerant.
Conclusion
A high level of salt tolerance (Na) is tolerated by these maritime species which is a unique trait in Chrysanthemum. A new diagnostic trait of inflorescence length was discovered to distinguish among C. arcticum and C. a. subsp. arcticum. Significant flowering differences occurred among the species C. arcticum and C. a. subsp. arcticum under same photoperiodic environment, including flowering rates and visible bud date. This study on the species’ variation in morphological and diagnostic traits is of importance to link morphological traits with single nucleotide polymorphism (SNP) markers.