Deep-water morphs of lake charr, Salvelinus namaycush, are found, with one exception, in four of the largest lakes in the world: lakes Superior and Mistassini (QC) and Great Bear and Slave lakes. This paper advances a hypothesis for resource polymorphisms involving two types of deepwater morph, one of which is characteristic of the humper and the other of the siscowet charrs of Lake Superior. My hypothesis states that, first, the humper, or a humper-like morph, diverged postglacially in sympatry from the ancestral common (shallow-water) lake charr and became a feeding specialist on Mysis relicta. Second, in at least two of the four lakes the siscowet, or a siscowet-like charr, diverged as a feeding specialist on postglacially derived forms of deep-water ciscoes. In Lake Superior a successional process may have resulted in dominance of the siscowet at the expense of the humper charr. I concur with a previous inference that the one occurrence of a deep-water charr in a small lake (the above exception) represents emigration from Lake Superior. I further infer that this event involved an early humper charr, which implies that this morphotype had differentiated in Lake Superior in less than 1,900 year. I suggest that innate differences in plasticity, breeding behavior and assortive mating, and philopatry account for why Arctic charr isolate readily in small lakes whereas lake charr do not. My hypothesis assumes divergence of deep-water morphs occurred postglacially, an idea consistent with genetic and biogeographical evidence.