Osmotic stress induces activation of an adaptive mitogen-activated protein kinase pathway in concert with disassembly of the actin cytoskeleton by a mechanism that is not understood. We have previously shown that the conserved actin-interacting MAP kinase kinase kinase Ssk2p/MEKK4, a member of the high-osmolarity glycerol (HOG) MAPK pathway of Saccharomyces cerevisiae, mediates recovery of the actin cytoskeleton following osmotic stress. In this study, we have employed in vitro kinase assays to show that Ssk2p kinase activity is activated for the actin recovery pathway via a noncanonical, Ssk1p-independent mechanism. Our work also shows that Ssk2p requires the polarisome proteins Bud6p and Pea2p to promote efficient, polarized actin reassembly but that this requirement can be bypassed by overexpression of Ssk2p. Formin (BNI1 or BNR1) and tropomyosin functions are also required for actin recovery but, unlike for Bud6p and Pea2p, these requirements cannot be bypassed by overexpression of Ssk2p. These results suggest that Ssk2p acts downstream of Bud6p and Pea2p and upstream of tropomyosin to drive actin recovery, possibly by upregulating the actin nucleation activity of the formins.