The total lipids extracted from brush border membranes form smectic lamellar phases when dispersed in water. 31P broad-band nuclear magnetic resonance (NMR) shows that between body temperature (37 degrees C) and freezing of the solvent, the extracted lipids form bilayers with the lipid molecules undergoing fast anisotropic motion. This is also true for the lipids present in the brush border membrane. The electron spin resonance (ESR) results obtained with various hydrophobic spin probes incorporated in either brush border vesicle membranes or their extracted lipids are consistent with this interpretation. By use of a variety of chemically different spin-labels, the temperature dependence of brush border membranes and their extracted lipids was probed. The temperature dependence of various ESR spectral parameters shows discontinuities that, by comparison with differential scanning calorimetry, are assigned to a lipid thermotropic phase transition. Differential scanning calorimetry shows that the lipid in brush border membranes undergoes a broad, reversible phase transition of low enthalpy between 10 and 30 degrees C, with a peak temperature of about 25 degrees C. Hence, the brush border membrane of rabbit small intestine functions in the liquid-crystalline state, well above the peak temperature and also above the upper limit of the lipid phase transition. Therefore, in itself, the thermotropic lipid phase transition is unlikely to play a physiological role. The low enthalpy of the lipid phase transition, indicative of a lack of cooperativity, is primarily attributed to the relatively high cholesterol content and to heterogeneity in the lipid composition of this membrane [Hauser, H., Howell, K., Dawson, R. M. C., & Bowyer, D. E. (1980) Biochim. Biophys. Acta 602, 567-577].(ABSTRACT TRUNCATED AT 250 WORDS)