The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/ dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.Secondary metabolites are a remarkably rich source of medically useful compounds. A survey of the literature on 1,500 secondary metabolites isolated and characterized between 1993 and 2001 revealed that over half of these compounds have antibacterial, antifungal, or antitumor activity (19). Fungal secondary metabolites, in particular, include a number of important compounds, such as penicillin, cephalosporin, the antihypercholesterolemic agent lovastatin and other statins, and immunosuppressants such as cyclosporine, as well as antifungals (reviewed in references 3, 13, 16, and 19). Other fungal secondary metabolites are important not for their benefits but rather for the problems they cause. For example, the carcinogenic toxins aflatoxin and sterigmatocystin are produced by members of the genus Aspergillus (see references 7, 28, and 29 and earlier references therein; reviewed additionally in references 1 and 26).The sequencing of fungal genomes has revealed several important things about fungal secondary metabolism. First, as was suspected from the results of previous work (13), the genes of pathways that produce particular secondary metabolites are often clustered together (10, 14, 18). Second, fungi have many more secondary metabolism pathways than was previously thought. Analyses of the A. nidulans genome, for example, indicate that A. nidulans has 50 clusters that are predicted to synthesize secondary metabolites (27 polyketides, 14 nonribosomal peptides, 6 fatty acids, 1 terpene, and 2 indole alkaloids) (3, 18). Our own genomic analyses suggest that this number may be a slight overestimate (because more than one polyketide synthase [PKS] and/or nonribosomal peptide synthetase may be involved in a single pathway), but clearly A. nidulans has the ability to synthesize many secondary metabolites. Only a limited number of secondary metabolites in A. nidulans have been identified (aspyridones A and B [from a single pathway], aspoqui...