Understanding soil phosphorus (P) distribution and its key drivers is fundamental for sustainable P management. In this study, a 21-year fertilization experiment on black soil was carried out, setting up five fertilization treatments: unfertilized control (CK), nitrogen and potassium (NK), nitrogen, P and potassium (NPK), NPK plus straw (NPKS), and NPK plus manure (NPKM). The distribution and effecting factors of P pools within soil aggregates were investigated. Compared to CK, the NK and NPK treatments decreased calcium-associated P concentration in all aggregate fractions. Meanwhile, the NPK treatment significantly increased the organic P extracted from NaOH in unaggregated particles (<0.053 mm). This was mainly due to the reduction in soil pH. The NPKS and NPKM treatments increased almost all P forms in aggregates, especially Ca-P. For the NPKM treatment, inorganic P extracted from resin, NaHCO3, and NaOH increased as aggregate size increased. This was mainly because straw or manure addition promoted soil organic carbon (SOC) storage in aggregates, creating more sorption sites via association with amorphous metallic minerals, and, thus, facilitating P accumulation. In conclusion, decreasing soil pH by chemical fertilizers is an effective strategy for mobilizing soil P, whereas increasing SOC by straw or manure facilitates P accumulation.