Where is CO2 ? The intermolecular interactions of [C4 mim]BF4 and [C4 mim]PF6 ionic liquids and CO2 have been determined by high-pressure NMR spectroscopy in combination with molecular dynamic simulations. The anion and the cation are both engaged in interactions with CO2 . A detailed picture of CO2 solvation in these ILs is provided. CO2 solubility is essentially determined by the microscopic structure of the IL.
Confined water in aqueous solutions of imidazolium-based ionic liquids (ILs) associated with acetate and imidazolate anions react reversibly with CO to yield bicarbonate. Three types of CO sorption in these "IL aqueous solutions" were observed: physical, CO -imidazolium adduct generation, and bicarbonate formation (up to 1.9 mol mol of IL), resulting in a 10:1 (molar ratio) total absorption of CO relative to imidazolate anions in the presence of water 1:1000 (IL/water). These sorption values are higher than the classical alkanol amines or even alkaline aqueous solutions under similar experimental conditions.
In the last few years, ionic liquids (ILs) have been the focus of extensive studies concerning the relationship between structure and properties and how this impacts their application. Despite a large number of studies, several topics remain controversial or not fully answered, such as: the existence of ion pairs, the concept of free volume and the effect of water and its implications in the modulation of ILs physicochemical properties. In this paper, we present a critical review of state-of-the-art literature regarding structure–property relationship of ILs, we re-examine analytical theories on the structure–property correlations and present new perspectives based on the existing data. The interrelation between transport properties (viscosity, diffusion, conductivity) of IL structure and free volume are analysed and discussed at a molecular level. In addition, we demonstrate how the analysis of microscopic features (particularly using NMR-derived data) can be used to explain and predict macroscopic properties, reaching new perspectives on the properties and application of ILs.
Branching at the alkyl side chain of the imidazolium cation in ionic liquids (ILs) was evaluated towards its effect on carbon dioxide (CO2 ) solubilization at 10 and 80 bar (1 bar=1×10(5) Pa). By combining high-pressure NMR spectroscopy measurements with molecular dynamics simulations, a full description of the molecular interactions that take place in the IL-CO2 mixtures can be obtained. The introduction of a methyl group has a significant effect on CO2 solubility in comparison with linear or fluorinated analogues. The differences in CO2 solubility arise from differences in liquid organization caused by structural changes in the cation. ILs with branched cations have similar short-range cation-anion orientations as those in ILs with linear side chains, but present differences in the long-range order. The introduction of CO2 does not cause perturbations in the former and benefits from the differences in the latter. Branching at the cation results in sponge-like ILs with enhanced capabilities for CO2 capture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.