The preferential binding of anions and cations in aqueous solutions of the ionic liquids (ILs) 1-butyl-3-methylimidazolium ([C4mim](+)) and 1-ethyl-3-methylimidazolium ([C2mim](+)) chloride and dicyanamide (dca(-)) with the small alpha-helical protein Im7 was investigated using a combination of differential scanning calorimetry, NMR spectroscopy and molecular dynamics (MD) simulations. Our results show that direct ion interactions are crucial to understand the effects of ILs on the stability of proteins and that an anion effect is dominant. We show that the binding of weakly hydrated anions to positively charged or polar residues leads to the partial dehydration of the backbone groups, and is critical to control stability, explaining why dca(-) is more denaturing than Cl(-). Direct cation-protein interactions also mediate stability; cation size and hydrophobicity are relevant to account for destabilisation as shown by the effect of [C4mim](+) compared to [C2mim](+). The specificity in the interaction of IL ions with protein residues established by weak favourable interactions is confirmed by NMR chemical shift perturbation, amide hydrogen exchange data and MD simulations. Differences in specificity are due to the balance of interaction established between ion pairs and ion-solvent that determine the type of residues affected. When the interaction of both cation and anion with the protein is strong the net result is similar to a non-specific interaction, leading ultimately to unfolding. Since the nature of the ions is a determinant of the level of interaction with the protein towards denaturation or stabilisation, ILs offer a unique possibility to modulate protein stabilisation or even folding events.
The human macrophage galactose-type lectin (MGL) is a key physiological receptor for the carcinoma-associated Tn antigen (GalNAc-α-1-O-Ser/Thr) in mucins. NMR and modeling-based data on the molecular recognition features of synthetic Tn-bearing glycopeptides by MGL are presented. Cognate epitopes on the sugar and matching key amino acids involved in the interaction were identified by saturation transfer difference (STD) NMR spectroscopy. Only the amino acids close to the glycosylation site in the peptides are involved in lectin contact. Moreover, control experiments with non-glycosylated MUC1 peptides unequivocally showed that the sugar residue is essential for MGL binding, as is Ca(2+) . NMR data were complemented with molecular dynamics simulations and Corcema-ST to establish a 3D view on the molecular recognition process between Gal, GalNAc, and the Tn-presenting glycopeptides and MGL. Gal and GalNAc have a dual binding mode with opposite trend of the main interaction pattern and the differences in affinity can be explained by additional hydrogen bonds and CH-π contacts involving exclusively the NHAc moiety.
Where is CO2 ? The intermolecular interactions of [C4 mim]BF4 and [C4 mim]PF6 ionic liquids and CO2 have been determined by high-pressure NMR spectroscopy in combination with molecular dynamic simulations. The anion and the cation are both engaged in interactions with CO2 . A detailed picture of CO2 solvation in these ILs is provided. CO2 solubility is essentially determined by the microscopic structure of the IL.
Branching at the alkyl side chain of the imidazolium cation in ionic liquids (ILs) was evaluated towards its effect on carbon dioxide (CO2 ) solubilization at 10 and 80 bar (1 bar=1×10(5) Pa). By combining high-pressure NMR spectroscopy measurements with molecular dynamics simulations, a full description of the molecular interactions that take place in the IL-CO2 mixtures can be obtained. The introduction of a methyl group has a significant effect on CO2 solubility in comparison with linear or fluorinated analogues. The differences in CO2 solubility arise from differences in liquid organization caused by structural changes in the cation. ILs with branched cations have similar short-range cation-anion orientations as those in ILs with linear side chains, but present differences in the long-range order. The introduction of CO2 does not cause perturbations in the former and benefits from the differences in the latter. Branching at the cation results in sponge-like ILs with enhanced capabilities for CO2 capture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.