Genistein, a protein tyrosine kinase (PTK) inhibitor, regulates ion channel activities. However, the mechanism of action of genistein on large-conductance calcium-activated potassium (BK(Ca)) channels is unclear. This study aimed to investigate whether the mechanism of Mg(2+)-dependent modulation of BK(Ca) channel activity in vascular smooth muscle cells involved inhibition of phosphorylation by genistein or direct interaction between genistein and BK(Ca) channels. The whole-cell and inside-out patch-clamp techniques were used to measure BK(Ca) currents and the effects of genistein on BK(Ca) channel activities in rat mesenteric arteriolar smooth muscle cells. We found that the effects of genistein on BK(Ca) currents were Mg(2+)-dependent. Genistein (50 μM) inhibited BK(Ca) currents if the intracellular free magnesium concentration ([Mg(2+)]i) was 2 μM or 20 μM, but amplified BK(Ca) currents if [Mg(2+)]i was 200 μM or 2000 μM. The inhibitory effect of genistein on BK(Ca) currents was reversed by the protein tyrosine phosphatase inhibitor sodium orthovanadate (0.5 mM). Daidzein (50 μM), an inactive analogue of genistein, also amplified BK(Ca) currents, and its amplification was insensitive to orthovanadate. Another PTK inhibitor, tyrphostin 23 (50 μM), reduced the open probability of BK(Ca) channels. This inhibitory effect was weaker at 200 μM [Mg(2+)]i than at 2 μM [Mg(2+) ]i, and was countered by orthovanadate. Our results suggest that genistein amplifies BK(Ca) currents at a high [Mg(2+)]i, but inhibits BK(Ca) currents at a low [Mg(2+)]i. The mechanism of this biphasic effects involves PTK-independent amplification and [Mg(2+)]i -PTK-dependent inhibition.