We compared the effects of cytosolic free magnesium (Mg(2+)(i)) on L-type Ca(2+) current (I(Ca,L)) in patch-clamped guinea pig ventricular cardiomyocytes under basal conditions, after inhibition of protein phosphorylation, and after stimulation of cAMP-mediated phosphorylation. Basal I(Ca,L) density displayed a bimodal dependence on the concentration of Mg(2+)(i) ([Mg(2+)](i); 10(-6)-10(-2) M), which changed significantly as cell dialysis progressed due to a pronounced and long-lasting rundown of I(Ca,L) in low-Mg(2+) dialysates. Ten minutes after patch breakthrough, I(Ca,L) density (at +10 mV) in Mg(2+)(i)-depleted cells ([Mg(2+)](i) approximately 1 microM) was elevated, increased to a maximum at approximately 20 microM [Mg(2+)](i), and declined steeply at higher [Mg(2+)](i). Treatment with the broad-spectrum protein kinase inhibitor K252a (10 microM) reduced I(Ca,L) density and abolished these effects of Mg(2+)(i) except for a negative shift of I(Ca,L)-voltage relations with increasing [Mg(2+)](i). Maximal stimulation of cAMP-mediated phosphorylation occluded the Mg(2+)(i)-induced stimulation of I(Ca,L) and prevented inhibitory effects of the ion at [Mg(2+)](i) <1 mM but not at higher concentrations. These results show that the modulation of I(Ca,L) by Mg(2+)(i) requires protein kinase activity and likely originates from interactions of the ion with proteins involved in the regulation of protein phosphorylation/dephosphorylation. Stimulatory effects of Mg(2+)(i) on I(Ca,L) seem to increase the cAMP-mediated phosphorylation of Ca(2+) channels, whereas inhibitory effects of Mg(2+)(i) appear to curtail and/or reverse cAMP-mediated phosphorylation.
UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca(2+) imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at -80 mV, dialyzed with K(+)-, Na(+)-free pipette solution, and bathed with K(+)-free Tyrode's solution at 22 degrees C. During experiments that lasted for approximately 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from -80 to -40 mV, but had little effect on background current or on L-type Ca(2+) current. Trials with depolarized holding potential, Ca(2+) channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na(+) current (I(Na)). The amplitude of the late inward current sensitive to 100 microM: TTX was increased by 3.5-fold after 20-30 min of irradiation. UVA modulation of late I(Na) may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac I(Na).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.