The RNA-binding protein Y14 heterodimerizes with Mago as the core of the exon junction complex during precursor mRNA splicing and plays a role in mRNA surveillance in the cytoplasm. Using the Y14/Magoh heterodimer as bait in a screening for its interacting partners, we identified the protein-arginine methyltransferase PRMT5 as a candidate. We show that Y14 and Magoh, but not other factors of the exon junction complex, interact with the cytoplasmic PRMT5-containing methylosome. We further provide evidence that Y14 promoted the activity of PRMT5 in methylation of Sm proteins of the small nuclear ribonucleoprotein core, whereas knockdown of Y14 reduced their methylation level. Moreover, Y14 overexpression induced the formation of a large, active, and small nuclear ribonucleoprotein (snRNP)-associated methylosome complex. However, Y14 may only transiently associate with the snRNP assembly complex in the cytoplasm. Together, our results suggest that Y14 facilitates Sm protein methylation probably by its activity in promoting the formation or stability of the methylosome-containing complex. We hypothesize that Y14 provides a regulatory link between pre-mRNA splicing and snRNP biogenesis.The RNA-binding protein Y14 is evolutionally conserved in metazoans and participates in mRNA biogenesis (1-4). Y14 contains an RNA recognition motif in the central region, which is involved in the interaction with its stable partner Magoh (5). The C-terminal region of Y14 harboring two consecutive arginine-serine (RS) dipeptides and several arginine and glycine residues is predicted to be less structured but can be post-translationally modified (6). In Drosophila, the Y14/Mago homolog participates in transport and translation control of posterior mRNAs during oogenesis (7,8). In vertebrates, Y14/Mago, together with another heterodimeric factor eIF4AIII/MLN51, constitutes the core of the exon junction complex (EJC), 2 which is a multiprotein complex assembled on spliced mRNAs in a splicing-dependent manner (9, 10). In the EJC, Y14 directly interacts with several other factors, including RNA export factor (REF/Aly), RNPS1, and Upf3 (11). The EJC serves as a platform for binding of the mRNA export receptor Tip-associated protein (TAP) and factors involved in nonsense-mediated mRNA decay (4, 10, 12). Y14 indeed plays an important role in nonsense-mediated mRNA decay (4).We have reported previously that the RG-rich sequences in the C-terminal domain of human Y14 can be methylated, and the RS dipeptides can be phosphorylated (6). In this study, our initial attempt to search for the enzymes or regulators responsible for post-translational modification of Y14 led to the identification of the protein-arginine methyltransferase PRMT5 as a potential interacting factor of Y14. PRMT5 is a type II protein methyltransferase that catalyzes both monomethylation and symmetrical dimethylation (13-15). PRMT5 localizes to both the nucleus and the cytoplasm (14, 16). In the nucleus, PRMT5 methylates transcriptional regulatory factors and may thereby affect ...