International audienceWith the help of associations between Eu3+, Yb3+, and Nd3+ ions and low-potential redox-active ruthenium carbon-rich complexes bearing bipyridine chelating unit(s) of the type trans-[Ph–C≡C–(dppe)2Ru–C≡C–bipy-κ2N,N′–Ln(TTA)3], trans-[(dppe)2Ru(−C≡C–bipy-κ2N,N′–Ln(TTA)3)2], and trans-[Ph–C≡C–(dppe)2Ru–C≡C–C6H4–C≡C–bipy-κ2N,N′–Yb(TTA)3], we built new original d–f heterometallic complexes. Efficient sensitization in the visible range of the Nd3+ and Yb3+ near-infrared (NIR) emitters was achieved with the metal–acetylide antenna, while sensitization of the Eu3+ ion was not efficient owing to the low energy level of the antenna excited state. The redox properties of these groups also allow for low-potential redox modulation of NIR luminescence of the Yb3+ ion and, for the first time, of the Nd3+ ion