Practically, 12% of used dyes are excluded as waste in the mobile aqueous environment. Methyl orange (MO), an industrial azo dye, is known to be carcinogenic. Accordingly, this work was engaged to fabrication of a high-efficiency visible light photocatalysts based on Ag-Alginate/Chitosan-coated MgO nanocomposite beads. MgO and Ag were prepared via precipitation and γ-radiation reduction technique as a green physical one, respectively. The degradation mechanisms depended on catalytic reduction by means of sodium borohydride/Ag and photo oxidative degradation. XRD proved the periclase crystalline form of MgO of size 20 nm and the formation of face centered cubic silver crystals of size 15 nm. The degradation yield varied directly with time, MgO and dye concentration until certain limit. Five and twenty minutes were enough to get clear solution of MO (30 and 15 ppm, respectively) while 60 min was required to achieve the same target for 60 ppm MO solution. The catalysts showed high efficiency for MO of high concentration. The incorporation of Ag into catalytic beads could support both mechanisms as it could elevate the degradation efficiency up to 50% and save the time to a great extent. Thus, this carrier fruitfully converted wastewater into an effluent that can be repaid to the water cycle with minimal strike on the ecosystem.