TiO2-based building materials possess air purification, self-cleaning, and sterilization functionalities, making them innovative green building materials with significant potential for future energy-saving and emission-reduction applications. However, the transition from laboratory-scale to practical applications poses substantial challenges in improving the photocatalytic efficiency and stability of TiO2-based building materials. In recent years, researchers have made considerable efforts to enhance their efficiency and stability. This paper provides a concise overview of the photocatalytic principles employed in buildings for air purification, discusses preparation techniques for TiO2-based building materials, explores strategies to improve their efficiency, outlines key factors influencing their performance in practical applications, analyzes limitations, and discusses future development trends. Finally, we propose recommendations for further research on photocatalytic buildings and their real-world implementation as a valuable reference for developing highly efficient and stable photocatalytic building materials. The aim of this paper is to guide the application of TiO2-based photocatalysts in green buildings towards creating more efficient and stable low-carbon buildings that support sustainable urban growth.