Self-healing of defects imposed by external stimuli such as high energy radiation is a possibility to sustain the operational lifetime of electronic devices such as radiation detectors. Cs 3 Bi 2 Br 3 I 6 polycrystalline wafers are introduced here as novel X-ray detector material, which not only guarantees a high X-ray stopping power due to its composition with elements with high atomic numbers, but also outperforms other Bi-based semiconductors in respect to detector parameters such as detection limit, transient behavior, or dark current. The polycrystalline wafers represent a size scalable technology suitable for future integration in imager devices for medical applications. Most astonishingly, aging of these wafer-based devices results in an overall improvement of the detector performance-dark currents are reduced, photocurrents are increased, and one of the most problematic properties of X-ray detectors, the base line drift is reduced by orders of magnitude. These aging induced improvements indicate self-healing effects which are shown to result from recrystallization. Optimized synthetic conditions also improve the as prepared X-ray detectors; however, the aged device outperforms all others. Thus, self-healing acts in Cs 3 Bi 2 Br 3 I 6 as an optimization tool, which is certainly not restricted to this single compound, it is expected to be beneficial also for many further polycrystalline ionic semiconductors.