This work presents
an imprinted polymer-based thermal biomimetic
sensor for the detection of
Escherichia coli
. A novel
and facile bacteria imprinting protocol for polydimethylsiloxane (PDMS)
films was investigated, and these receptor layers were functionalized
with graphene oxide (GO) in order to improve the overall sensitivity
of the sensor. Upon the recognition and binding of the target to the
densely imprinted polymers, a concentration-dependent measurable change
in temperature was observed. The limit of detection attained for the
sensor employing PDMS-GO imprints was 80 ± 10 CFU/mL, a full
order lower than neat PDMS imprints (670 ± 140 CFU/mL), illustrating
the beneficial effect of the dopant on the thermo-dynamical properties
of the interfacial layer. A parallel benchmarking of the thermal sensor
with a commercial impedance analyzer was performed in order to prove
the possibility of using the developed PDMS-GO receptors with multiple
readout platforms. Moreover,
S. aureus
,
C.
sakazakii
and an additional
E. coli
strain
were employed as analogue species for the assessment of the selectivity
of the device. Finally, because of the potential that this biomimetic
platform possesses as a low-cost, rapid, and on-site tool for monitoring
E. coli
contamination in food safety applications, spiked
fruit juice was analyzed as a real sample. Reproducible and sensitive
results fulfill the limit requirements of the applicable European
microbiological regulation.