We conduct computational analyses of ion permeation characteristics in a model glycine receptor (GlyR) modified by photo-sensitive compounds. In particular, we consider hypothetical attachment to the channel of charge-neutral chemical groups which can be photo-activated by shining light of an appropriate wavelength on the system. After illumination, the attached molecules become charged via a photodissociation process or excited into a charge-separated state (thus generating a significant electric dipole). We carry out Brownian Dynamics simulations of ion flow through the channel in the presence of the additional charges generated in this fashion. Based on these calculations, we predict that photo-activation of appropriately positioned photo-sensitive compounds near the channel mouth can significantly modify the rate of ion permeation and the current rectification ratio. Possible implications for GlyR-based device designs are briefly discussed.