Design of highly luminescent nanomaterials is an emerging area of research for photonic and bio-photonic applications. Nowadays, dye-encapsulated polymer nanoparticles (PNPs) are found to be very promising alternative nextgeneration luminescent nanomaterials because of extraordinary brightness, easy synthesis, higher photo-stability and nontoxic behaviour. Herein, we have highlighted the dynamics of the fluorophore molecules inside PNPs. Furthermore, we discuss the fundamental correlation of particle brightness with the size of the PNPs as well as population of the dye molecules inside the PNPs. Considering the resonance energy transfer process, generation of white light by varying the dye concentration and singlet oxygen generation using photosensitizer dye have been described. Finally, we discuss the importance of hybrids of conjugated PNPs for potential light harvesting systems such as photovoltaic and optoelectronic applications.