Visual pigments in the regressed eye and pineal of the depigmented neotenic urodele, the blind cave salamander (Proteus anguinus anguinus), were studied by immunocytochemistry with anti-opsin antibodies. The study included light- and electron-microscopic investigations of both the eye and the pineal organ. A comparison was made with the black pigmented subspecies Proteus anguinus parkelj (black proteus), which has a normal eye structure. In the retina of the black proteus, we found principal rods, red-sensitive cones and a third photoreceptor type, which might represent a blue- or UV-sensitive cone. Photoreceptors in the regressed eye of the blind cave salamanders from the Planina cave contained degenerate outer segments, consisting of a few whorled discs and irregular clumps of membranes. The great majority of these outer segments showed immunolabelling for the red-sensitive cone opsin and only a few of them were found to be positive for rhodopsin. An even more pronounced degeneration was observed in the photoreceptors of the animals derived from the Otovec doline, which are completely devoid of an outer segment, most of them not even possessing an inner segment. Even in some of these highly degenerate cells, the presence of rhodopsin could be detected in the plasma membrane; however, immunoreactions with antibodies recognizing cone visual pigment were negative. In the pineals of all studied animals, the degenerate photoreceptor outer segments were recognized exclusively by the antibody against the red-sensitive cone opsin. The presence of immunopositive visual pigments indicates the possibility of a retained light sensitivity in the blind cave salamander photoreceptors.