Visual pigments in the regressed eye and pineal of the depigmented neotenic urodele, the blind cave salamander (Proteus anguinus anguinus), were studied by immunocytochemistry with anti-opsin antibodies. The study included light- and electron-microscopic investigations of both the eye and the pineal organ. A comparison was made with the black pigmented subspecies Proteus anguinus parkelj (black proteus), which has a normal eye structure. In the retina of the black proteus, we found principal rods, red-sensitive cones and a third photoreceptor type, which might represent a blue- or UV-sensitive cone. Photoreceptors in the regressed eye of the blind cave salamanders from the Planina cave contained degenerate outer segments, consisting of a few whorled discs and irregular clumps of membranes. The great majority of these outer segments showed immunolabelling for the red-sensitive cone opsin and only a few of them were found to be positive for rhodopsin. An even more pronounced degeneration was observed in the photoreceptors of the animals derived from the Otovec doline, which are completely devoid of an outer segment, most of them not even possessing an inner segment. Even in some of these highly degenerate cells, the presence of rhodopsin could be detected in the plasma membrane; however, immunoreactions with antibodies recognizing cone visual pigment were negative. In the pineals of all studied animals, the degenerate photoreceptor outer segments were recognized exclusively by the antibody against the red-sensitive cone opsin. The presence of immunopositive visual pigments indicates the possibility of a retained light sensitivity in the blind cave salamander photoreceptors.
A review is given on several sensory systems that enable troglophile and troglobian urodele species to orient non-visually in their extreme hypogean habitat. A new sense was discovered allowing the animals to orient according to the Earth's magnetic fi eld, which could serve as a basic and always available reference for general spatial orientation. Moreover, working with permanent magnetic fi eld stimuli off ers a very sensitive experimental method to discover the urodeles' thresholds for other sensory modalities such as light, sounds, and other stimuli, perhaps in competition or combination with the magnetic one. Proteus' audition as underwater hearing and light sensitivity due to its partly remaining sensory cells and/or skin sensitivity were studied. Excellent underwater hearing abilities had been demonstrated for Proteus with an acoustic behavioural method. Th e ability of sound pressure registration in Proteus is supposed to be attained by the tight anatomical junction between the ceiling of the oral cavity and the oval window. More generally, all non-visual sensory capabilities may facilitate certain behavioral strategies, compensating for missing visual orientation. Troglobians are more likely than others to own and regularly use the sensorial †) We would like to dedicate this article to the memory of Prof. Dr. Peter Schlegel and Dr. Wolfgang Briegleb, as a review on several sensory systems that enable troglophile and troglobian urodele species to orient non-visually in their extreme hypogean habitat.Th e sudden and much too early death of Prof. Schlegel, the leading expert on the research fi eld of sensory physiology and ethology of troglophile and troglobian amphibians convulsed us.Dr. Briegleb died suddenly by accident with his delta dragon. We are grateful to him for his research opus since the late fi fties and early sixties that essentially contributed to the knowledge of Proteus ' biology, development, sensory physiology, and eco-ethology.
The ultrastructural characteristics of melanosomes and premelanosomes observed during the biogenesis of melanosomes in liver pigment cells of the neotenic cave salamander Proteus anguinus (Proteidae) are described. It is well known that amphibian liver pigment cells, also known as Kupffer cells (KC), contain melanosomes and are able to synthesize melanin. Liver pigment cells of P. anguinus contain numerous siderosomes and melanosomes. The melanosomes are grouped together within single-membrane-bounded bodies, named as 'clusters of melanosomes' or 'melanosomogenesis centers'. Inside such clusters, different structures are present: (1) filament-like structures, characteristic of the initial stage of melanosome biogenesis, (2) medium electron-dense melanosomes in different stages of melanization, (3) melanosomes with an electron-dense cortical area and a less electron-dense medullar area, and (4) uniformly highly electron-dense mature melanosomes or melanin granules. Histochemical and cytochemical dihydroxyphenylalanine (DOPA) oxidase reactions in pigment cells were positive. Our results confirm the ability of amphibian KC to synthesize melanin and contribute to this little known subject.
The morphological alterations of hepatocytes of cave-dwelling salamander Proteus anguinus anguinus after food deprivation periods of one and 18 months were investigated and the concentrations of glycogen, lipids, and proteins in the liver were determined. Quantitative analyses of the hepatocyte size, the lipid droplets, the number of mitochondria, and volume densities of M and P in the hepatocytes were completed. After one month of food deprivation, the cytological changes in the hepatocytes are mainly related to the distribution and amount of glycogen, which was dispersed in the cytoplasm and failed to form clumps typical of normal liver tissue. After 18 months of food deprivation hepatocytes were reduced in size, lipid droplets were less numerous, peroxisomes formed clusters with small, spherical mitochondria, and specific mitochondria increased in size and lost cristae. Lysosomes, autophagic vacuoles, and clear vacuoles were numerous. The liver integrity was apparently maintained, no significant loss of cytoplasmic constituents have been observed. Biochemical analysis revealed the utilization of stored metabolic reserves in the liver during food deprivation. Glycogen is rapidly utilized at the beginning of the starvation period, whereas lipids and proteins are utilized subsequently, during prolonged food deprivation. In the Proteus liver carbohydrates are maintained in appreciable amounts and this constitutes a very important energy depot, invaluable in the subterranean environment.
The multicellular epithelial organs in Proteus anguinus, which Bugnion (1873) assumed to be developing neuromasts, have been analyzed by light- and electron-microscopy. Their fundamental structure consists of single ampullae with sensory and accessory cells with apical parts that extend into the pit of the ampulla, and of a short jelly-filled canal connecting the ampulla pit with the surface of the skin. The organs are located intra-epithelially and are supported by a tiny dermal papilla. The cell elements of sensory epithelium are apically linked together by tight junctions. The free apical surface of the sensory cell bears several hundred densely packed stereocilia-like microvilli whereas the basal surface displays afferent neurosensory junctions with a pronounced round synaptic body. The compact uniform organization of the apical microvillous part shows a hexagonal pattern. A basal body was found in some sensory cells whereas a kinocilium was observed only in a single cell. The accessory cells have their free surface differentiated in a sparsely distributed and frequently-forked microvilli. The canal wall is built of two or three layers of tightly coalescent flat cells bordering on the lumen with branching microvilli. The ultrastructure of the content of the ampulla pit is presented. In the discussion stress is laid on the peculiarities of the natural history of Proteus anguinus that support the view that the morphologically-identified ampullary organs are electroreceptive. The structural characteristics of ampullary receptor cells are dealt with from the viewpoint of functional morphology and in the light of evolutionary hypotheses of ampullary organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.