2012
DOI: 10.3389/fneng.2012.00011
|View full text |Cite
|
Sign up to set email alerts
|

Photosensitive-polyimide based method for fabricating various neural electrode architectures

Abstract: An extensive photosensitive-polyimide (PSPI)-based method for designing and fabricating various neural electrode architectures was developed. The method aims to broaden the design flexibility and expand the fabrication capability for neural electrodes to improve the quality of recorded signals and integrate other functions. After characterizing PSPI's properties for micromachining processes, we successfully designed and fabricated various neural electrodes even on a non-flat substrate using only one PSPI as an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
12
0

Year Published

2013
2013
2023
2023

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 21 publications
(12 citation statements)
references
References 38 publications
0
12
0
Order By: Relevance
“…Warnings of galvanic corrosion of such bimetallic junctions have been given, [ 1 ] but no significant corrosion related failure has been widely reported for polyimide–metal devices. Numerous examples of polyimide‐based neural devices exist that use TiPt, [ 66,67 ] TiAu, [ 68–70 ] CrAu, [ 71,72 ] etc. In addition, a multilayer stack of Pt/Au/Pt (i.e., platinum layers above and below a gold core) has been suggested to combine the improved stimulation and electrochemical behavior of platinum electrodes with the low resistance and power loss of mostly gold‐based traces.…”
Section: Resultsmentioning
confidence: 99%
“…Warnings of galvanic corrosion of such bimetallic junctions have been given, [ 1 ] but no significant corrosion related failure has been widely reported for polyimide–metal devices. Numerous examples of polyimide‐based neural devices exist that use TiPt, [ 66,67 ] TiAu, [ 68–70 ] CrAu, [ 71,72 ] etc. In addition, a multilayer stack of Pt/Au/Pt (i.e., platinum layers above and below a gold core) has been suggested to combine the improved stimulation and electrochemical behavior of platinum electrodes with the low resistance and power loss of mostly gold‐based traces.…”
Section: Resultsmentioning
confidence: 99%
“…The maximum thickness observed, using SEM, of the platinization layer was roughly \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\(10~\mu \) \end{document} m, together with the thickness of the array the total thickness will be about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\(18~\mu \) \end{document} m at the tips. Other groups have developed flexible arrays with a similar thickness of 10- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\(25~\mu \) \end{document} m [2] , [8] , [10] , [22] [24] , however, the size of the active sites on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\(\mu \) \end{document} -foil is considerably smaller, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\(10~\mu \) \end{document} m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\(^{\mathrm {2}}\) \end{document} compared to 400- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\(8000~\mu \) \end{document} m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\(^{\mathrm {2}}\) \end{document} , in most prior art.…”
Section: Methodsmentioning
confidence: 99%
“…In a similar vein, PI has been used to make fl exible microfl uidic devices with embedded electronic circuits, such as neural electrodes (Kato et al ., 2012), microfl uidic mass spectrometers (Spectrometry et al ., 2010), bioelectric activity monitors , liquid fl ow sensors (Kuoni et al ., 2003), and impedance spectroscopy fl ow cytometers (Gawad et al ., 2001). …”
Section: Polyimidementioning
confidence: 99%