Developing efficient and affordable catalysts is of great significance for energy and environmental sustainability. Heterostructure photocatalysts exhibit a better performance than either of the parent phases as it changes the band bending at the interfaces and provides a driving force for carrier separation, thus mitigating the effects of carrier recombination and back‐reaction. Herein, the photo/electrochemical applications of a variety of metal sulfides (MSx) (MoS2, CdS, CuS, PbS, SnS2, ZnS, Ag2S, Bi2S3, and In2S3)/TiO2 heterojunctions are summarized, including organic degradation, water splitting, and CO2 reduction conversion. First, a general introduction on each MSx material (especially bandgap structures) will be given. Then the photo/electrochemical applications based on MSx/TiO2 heterostructures are reviewed from the perspective of light harvesting ability, charge carrier separation and transportation, and surface chemical reactions. Special focus is given to CdS/TiO2 and PbS/TiO2‐based quantum dot sensitized solar cells. Ternary composites by taking advantages of positive synergetic effects are also well summarized. Finally, conclusions are made regarding approaches for structure design, and the authors' perspective on future architectural design and electrode construction is given. This work will make up the gap for TiO2 nanocomposites and shed light on the fabrication of more efficient MSx‐metal oxide junctions in photo/electrochemical applications.