Highly crystallized ZnO–Ga2O3 core–shell heterostructure microwire is synthesized by a simple one‐step chemical vapor deposition method, and constructed into a self‐powered solar‐blind (200–280 nm) photodetector with a sharp cutoff wavelength at 266 nm. The device shows an ultrahigh responsivity (9.7 mA W−1) at 251 nm with a high UV/visible rejection ratio (R251 nm/R400 nm) of 6.9 × 102 under zero bias. The self‐powered device has a fast response speed with rise time shorter than 100 µs and decay time of 900 µs, respectively. The ultrahigh responsivity, high UV/visible rejection ratio, and fast response speed make it highly suitable in practical self‐powered solar‐blind detection. Additinoally, this microstructure heterojunction design method would provide a new approach to realize the high‐performance self‐powered photodetectors.
A novel type of hierarchical nanocomposites consisted of MoS2 nanosheet coating on the self-ordered TiO2 nanotube arrays is successfully prepared by a facile combination of anodization and hydrothermal methods. The MoS2 nanosheets are uniformly decorated on the tube top surface and the intertubular voids with film appearance changing from brown to black color. Anatase TiO2 nanotube arrays (NTAs) with clean top surfaces and the appropriate amount of MoS2 precursors are key to the growth of perfect compositing TiO2 @MoS2 hybrids with significantly enhanced photocatalytic activity and photocurrent response. These results reveal that the strategy provides a flexible and straightforward route for design and preparation nanocomposites based on functional semiconducting nanostructures with 1D self-ordered TiO2 NTAs, promising for new opportunities in energy/environment applications, including photocatalysts and other photovoltaic devices.
Developing efficient and affordable catalysts is of great significance for energy and environmental sustainability. Heterostructure photocatalysts exhibit a better performance than either of the parent phases as it changes the band bending at the interfaces and provides a driving force for carrier separation, thus mitigating the effects of carrier recombination and back‐reaction. Herein, the photo/electrochemical applications of a variety of metal sulfides (MSx) (MoS2, CdS, CuS, PbS, SnS2, ZnS, Ag2S, Bi2S3, and In2S3)/TiO2 heterojunctions are summarized, including organic degradation, water splitting, and CO2 reduction conversion. First, a general introduction on each MSx material (especially bandgap structures) will be given. Then the photo/electrochemical applications based on MSx/TiO2 heterostructures are reviewed from the perspective of light harvesting ability, charge carrier separation and transportation, and surface chemical reactions. Special focus is given to CdS/TiO2 and PbS/TiO2‐based quantum dot sensitized solar cells. Ternary composites by taking advantages of positive synergetic effects are also well summarized. Finally, conclusions are made regarding approaches for structure design, and the authors' perspective on future architectural design and electrode construction is given. This work will make up the gap for TiO2 nanocomposites and shed light on the fabrication of more efficient MSx‐metal oxide junctions in photo/electrochemical applications.
A high sensitivity self-powered solar-blind photodetector is successfully constructed based on the polyaniline/MgZnO bilayer. The maximum responsivity of the photodetector is 160 μA W at 250 nm under 0 V bias. The device also exhibits a high on/off ratio of ≈10 under 250 nm illumination at a relatively weak light intensity of 130 μW cm without any power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.