Background
Shigella spp., which are facultative anaerobic bacilli within the Enterobacteriaceae family, present a significant public health burden due to their role as prominent contributors to diarrheal diseases worldwide. A molecular analysis can facilitate the identification and assessment of outbreaks involving this bacterium. So, we aimed to investigate the antibiotic susceptibility pattern and clonal relatedness of clinical Shigella spp. isolates obtained from patients with diarrhea in Hormozgan province, South of Iran.
Methods
From 2019 to 2021, a cross-sectional investigation was conducted on 448 stool samples obtained from patients who were experiencing diarrhea, in the southern region of Iran. Shigella spp. isolates were identified based on biochemical and serological tests. All Shigella species were verified using species-specific polymerase chain reaction (PCR), followed by susceptibility testing to antimicrobial agents. Subsequently, genotyping of all Shigella species was conducted using ERIC-PCR.
Results
Out of a total of 448 stool samples, the presence of Shigella was detected in 62 cases, accounting for a prevalence rate of 13.84%. Among the identified isolates, the majority were attributed to S. flexneri, representing 53.23% of the cases. This was followed by S. sonnei at 24.19% and S. boydii at 22.58%. Notably, no instances of S. dysenteriae were found. The highest prevalence of Shigella isolates was observed in infants and children under the age of five. A significant proportion of the identified isolates demonstrated resistance to various antibiotics. Specifically, high resistance rates were noted for ampicillin (90.78%), piperacillin–tazobactam (87.1%), cefixime (83.87%), trimethoprim–sulfamethoxazole (83.87%), cefotaxime (82.26%), and ceftriaxone (80.65%). In addition, a substantial number (87.1%) of the isolates exhibited a multidrug-resistant (MDR) phenotype. Using the ERIC-PCR method, a total of 11 clusters and 6 distinct single types were identified among all the Shigella isolates.
Conclusion
A notable occurrence of antibiotic-resistant Shigella species has been noted, with multi-drug resistant (MDR) strains presenting an increasing challenge for treating shigellosis worldwide, and this includes Iran. Techniques such as ERIC-PCR are useful for assessing the genetic variation and connections between Shigella strains, which indirectly contributes to understanding antimicrobial resistance patterns. Further research is needed to explore the specific correlation between resistance genes and ERIC genotyping patterns in Shigella strains.