Rhynchocypris oxycephalus
(Teleostei: Cyprinidae) is a typical small cold water fish, which is distributed widely and mainly inhabits in East Asia. Here, we sequenced and determined the complete mitochondrial genome of
R. oxycephalus
and studied its phylogenetic implication.
R. oxycephalus
mitogenome is 16,609 bp in length (GenBank accession no.: MH885043), and it contains 13 protein‐coding genes (PCGs), two rRNA genes, 22 tRNA genes, and two noncoding regions (the control region and the putative origin of light‐strand replication). 12 PCGs started with ATG, while COI used GTG as the start codon. The secondary structure of tRNA‐Ser (AGN) lacks the dihydrouracil (DHU) arm. The control region is 943bp in length, with a termination‐associated sequence, six conserved sequence blocks (CSB‐1, CSB‐2, CSB‐3, CSB‐D, CSB‐E, CSB‐F), and a repetitive sequence. Phylogenetic analysis was performed with maximum likelihood and Bayesian methods based on the concatenated nucleotide sequence of 13 PCGs and the complete sequence without control region, and the result revealed that the relationship between
R. oxycephalus
and
R. percnurus
is closest, while the relationship with
R. kumgangensis
is farthest. The genus
Rhynchocypris
is revealed as a polyphyletic group, and
R. kumgangensis
had distant relationship with other
Rhynchocypris
species. In addition, COI and ND2 genes are considered as the fittest DNA barcoding gene in genus
Rhynchocypris
. This work provides additional molecular information for studying
R. oxycephalus
conservation genetics and evolutionary relationships.