Butterflies use visual and chemical cues when interacting with their environment, but the role of hearing is poorly understood in these insects. Nymphalidae (brush-footed) butterflies occur worldwide in almost all habitats and continents, and comprise more than 6,000 species. In many species a unique forewing structure--Vogel's organ--is thought to function as an ear. At present, however, there is little experimental evidence to support this hypothesis. We studied the functional organization of Vogel's organ in the common blue morpho butterfly, Morpho peleides, which represents the majority of Nymphalidae in that it is diurnal and does not produce sounds. Our results confirm that Vogel's organ possesses the morphological and physiological characteristics of a typical insect tympanal ear. The tympanum has an oval-shaped outer membrane and a convex inner membrane. Associated with the inner surface of the tympanum are three chordotonal organs, each containing 10-20 scolopidia. Extracellular recordings from the auditory nerve show that Vogel's organ is most sensitive to sounds between 2-4 kHz at median thresholds of 58 dB SPL. Most butterfly species that possess Vogel's organ are diurnal, and mute, so bat detection and conspecific communication can be ruled out as roles for hearing. We hypothesize that Vogel's organs in butterflies such as M. peleides have evolved to detect flight sounds of predatory birds. The evolution and taxonomic distribution of butterfly hearing organs are discussed.