Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration.However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale.Keywords: peat, moorland gripping, wetland restoration, water table, blanket peat, afforestation, drainage 2
I IntroductionPeat is decaying organic matter that has accumulated under saturated conditions. Formation of peat therefore occurs in areas of positive water balance. Peatlands are more likely to form in regions with high precipitation excess, such as upland areas of the temperate and boreal zones or in lowland areas where shallow gradients, impermeable substrates or topographic convergence maintain saturation.Classification of peatland types is generally related to two fundamental factors: source of nutrients and source of water. Bogs are ombrotrophic peatlands dependent on precipitation for water and nutrient supply, whereas minerotrophic peatlands or fens are reliant on groundwater for water and nutrient supply (Johnson and Dunham, 1963). Bogs are therefore highly acidic (pH < 4) and contain low amounts of calcium and magnesuim, whereas minertrophic peats are less acidic and tend to be base rich.In England and Wales peat is classified as a deposit of at least 30 cm depth (50 cm in Scotland) containing more than 50 % organic carbon (Johnson and Dunham, 1963).This definition is arbitrary as there is no clear break between a highly organic mineral soil (e.g. podzol) and an almost purely organic Sphagnum peat (Clymo, 1983).However, from this definition it is possible to say that 2.9 million ha or 13 % of Britain is covered in peat, most (2.6 million ha) of which is in Scotland (Milne and Brown, 1997). This represents less than 1 % of the 350 million ha of the northern peatlands that mainly occupy the boreal and subarctic zones (Gorham, 1991). In Britain the dominant peatland is blanket bog which occurs on the gentle slopes of upland plateaux, ridges and benches and is primarily supplied with water and nutrients in the form of precipitat...