The terms green infrastructure and natural capital are interrelated. Natural capital as a concept is focused upon environmental assets which can provide services, either directly or indirectly to humans; it emphasizes the benefits humans obtain from the natural environment. Green infrastructure is a concept with a wide range of definitions. The term is sometimes applied to networks of green open spaces found in or around urban areas. In other contexts green infrastructure can describe alternative engineering approaches for storm water management, with co-benefits of temperature control, air quality management, wildlife habitats and/or recreation and amenity space. No environments are completely free of human influence and therefore no environments are entirely natural. Rather, there is a spectrum of degrees of 'naturalness' ranging from environments with minimal human influence through to built environments. A trio of case studies presented herein illustrates how green infrastructure projects are a practical application of the natural capital concept in that they seek to preserve and enhance natural capital via a management approach which emphasizes the importance of environmental systems and networks for the direct provision of ecosystem services to human populations. Natural capital forms critical components of all green infrastructure projects.
Two stormwater control measures (SCMs) installed in series were monitored for their individual impact on the hydrology and water quality of stormwater runoff from a 0.08-hectare watershed in Fayetteville, North Carolina, for 22 months. Runoff was first treated by permeable interlocking concrete pavement (PICP), the underdrain of which discharged into a proprietary box filter (Filterra ® biofiltration) which combined high-flow-engineered media with modest biological treatment from a planted tree. Due to a deteriorating contributing drainage area and high ratio of impervious area to permeable pavement area (2.6:1), clogging of the permeable pavement surface caused an estimated 38% of stormwater to bypass as surface runoff. Fifty-six percent of runoff volume infiltrated underlying soils, and the remaining 6% exited the Filterra ® as treated effluent; the hydrologic benefit of the Filterra ® was minimal, as expected. Primary treatment through the PICP significantly reduced event mean concentrations (EMCs) of total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), and total Kjeldahl nitrogen (TKN) but contributed to a significant increase in nitrate/nitrite (NO 2,3-N) concentrations. Secondary treatment by the Filterra ® further reduced TSS and TP concentrations and supplemented nitrogen removal such that treatment provided by the overall system was as follows: TSS (removal efficiency (RE): 96%), TP (RE: 75%), TN (RE: 42%), and TKN (RE: 51%). EMCs remained unchanged for NO 2,3-N. Despite EMC reductions, additional load reduction due to the Filterra ® was modest (less than 2%). This was because (1) a majority of pollutant load was removed via PICP exfiltration losses, and (2) nearly all of the export load was from untreated surface runoff, which bypassed the Filterra ® , and therefore the manufactured device never had the opportunity to treat it. Cumulative load reductions (based only upon events with samples collected at each sampling location) were 69%, 60%, and 41% for TSS, TP, and TN, respectively. When surface runoff was excluded, load reductions increased to over 96%; lower run-on ratios (which would reduce clogging rate) and/or increased maintenance frequency might have improved pollutant load removal.
Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.