The packed nanofiber solid-phase extraction of crude extracts of a mass viscous sample is challenging because the interference and recalcitrant particulates in the sample may attach to the nanofiber and block the column, which leads to insufficient sample extraction. A novel concentric layered nanofiber solid-phase extraction (SPE) column using polystyrene-based electrospun nanofiber as the stationary phase has been employed for the pretreatment of mass viscous crude extracts. The layered column was fabricated by using untouched nanofiber with its natural morphology rather than hand-packing of spoiled fiber to the control packing density of the column. In the novel column, the SPE packed bed was divided into a multi-layer structure to provide uniform radial and axial packing and to part the mobile phase stream by the isolated layer with great superiority in aspects such as lower column pressure and faster elution speed. The feasibility and efficiency of the LFSPE column were then evaluated via determination of rhodamine B (RB) from spiked chili samples. Based on the LFSPE column, a linear spiked calibration curve in the range of 0.02-5 mg/kg was obtained. The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.001 and 0.004 mg/kg, respectively; recoveries at 0.1, 1, and 2 mg/kg (n = 3) were all up to 95 %; and the RSD values of inter-day and intra-day were all below 5 %. This novel LFSPE column overcame heterogeneous packing and exploited the wall effect in subtle ways, and exhibited great superiority by comparison with some existing methods. Graphical Abstract ᅟ.