Energy Harvesting- (EH-) powered Device-to-Device (D2D) Communication underlaying Cellular Network (EH-DCCN) has been deemed as one of the basic building blocks of Internet of Things due to its green energy efficiency and adjacent communication. But available energy will be one of the biggest obstacles when implementing EH-DCCN due to the immaturity of EH technology and the volatility of environmental energy resources. To improve energy utilization, this study investigates an efficient scheduling and power allocation scheme about transmission load equilibrium in the time domain. Accordingly, a short-term Sum Energy Efficiency (stSEE) maximization problem for EH-powered D2D communication is modelled, while ensuring a fundamental transmission rate requirement of cellular users. Consequently, the optimization problem is a nonconvex mixed integer nonlinear programming problem. Thus, we propose a two-layer convex approximation iteration algorithm which can obtain a feasible quasioptimal solution for the stSEE problem. Simultaneously, a two-step heuristic algorithm in a slot-by-slot fashion is also developed to acquire a suboptimal solution without requiring statistical knowledge of channel and energy arrival processes. Simulated analysis indicates that the short-term scheduling strategy can obtain better performances in terms of energy efficiency and transmission rate than conventional real-time scheduling scheme. Besides, the maximum scheduled number of EH-D2D pairs underlaying one cellular user under different EH efficiency is analysed, which can give us a theoretical reference about the deployment of future EH-DCCN.