The lackey moth, Malacosoma neustria (Linnaeus, 1758), a worldwide pest, causes extensive economic losses particularly on hazelnut, plum, oak, poplar, and willow trees. A baculovirus, Malacosoma neustria nucleopolyhedrovirus (ManeNPV-T2), has been isolated from the larvae collected in Turkey and appears to have a potential as a microbial control agent. In this study, we describe the complete genome sequence of ManeNPV-T2 and compare it to other sequenced baculovirus genomes. The ManeNPV-T2 genome is a circular double-stranded DNA molecule of 130,202 bp, has 38.2% G + C, and is predicted to contain 131 putative open reading frames (ORFs) each with a coding capacity of more then 50 amino acids. There are 27 ORFs with unknown function of which 6 are unique to ManeNPV-T2. Eleven homologous regions (hrs) and two bro genes (bro-a and bro-b) were identified in the genome. There are two homologues of chaB and nicotinamide riboside kinase-1 genes, separated from themselves with a few nucleotides. Additionally, ac145, thought to be per os infectivity factor (pif) gene, is also found as two homologues. All 38 core genes are found in the ManeNPV-T2 genome. The phylogenetic tree of ManeNPV-T2 in relation to 50 other baculoviruses whose genomes have been completely sequenced showed ManeNPV-T2 to be closely related to the group II NPVs. This study expands our knowledge on baculoviruses, describes the characterization ManeNPV, and ultimately contributes to the registration of this virus as a microbial pesticide.