In this paper, we have presented the upward leader propagation model, considering the transition of stream leader process by the finite element method and analyzing the inception and subsequent physical processes of upward leader and the attractive radius for large wind turbines. For validating our model, the comparison of simulated results with the optically high‐speed video observation shows that the model can predict an accepted result of upward leader from a 163 m tall tower, the simulated upward leader velocity and length before final jump are 2.3 × 105 m/s and 187.67 m presented by Warner (2010), which are very similar to the observed results of 2.8 × 105 m/s and 184 m, respectively. At the same time, we find that the assumed constant speed ratio of downward/upward leader is improper and cannot accurately predict the attractive radius by lightning strike. Also, the simulated results are compared with the widely used EGM (electro geometric model), and it is found that the EGM has an obvious underestimation of attractive radius more than 50%.