In this study, we report an inexpensive, massively scalable, fast, and facile method for preparation of graphene oxide and reduced graphene oxide nanoplatelets. The basic strategy involved the preparation of graphite oxide (GO) from graphite through reaction with benzoyl peroxide (BPO), complete exfoliation of GO into graphene oxide sheets, followed by their in situ reduction to reduced graphene oxide nanoplatelets. The mechanism of graphene oxide producing is mainly the generation of oxygencontaining groups on graphene sheets. In addition, inserted BPO and expansion of CO 2 evolved during reaction will expand the distance between graphite layers, which are also main factors for exfoliation. Thermogravimetric analysis, Raman spectroscopy, and Fourier transform infrared spectroscopy indicated the successful preparation of GO. X-ray diffraction proved the mechanism of intercalation and exfoliation of graphite. Transmission electron microscopy and atomic force microscopy were used to demonstrate the structure of produced graphene oxide and reduced graphene oxide nanoplatelets.
Novel plasma-based technologies that offer maximum efficiency at minimal environmental costs are expected to further promote the sustainable societal and economic development. Unique transfer of chemical reactivity and energy from gaseous plasmas to water takes place in the absence of any other chemicals, but results in a product with a notable transient broad-spectrum biological activity, referred to as plasma-activated water (PAW). These features make PAW a green prospective solution for a wide range of biotechnology applications, from water purification to biomedicine. Here, we present a succinct review of how novel, efficient methods based on non-equilibrium reactive plasma chemistries can be applied to low-cost natural water sources to produce a prospective product with a wide range of applications while at the same time minimising the process steps and dramatically reducing the use of expensive and/or hazardous reagents. Despite the recent exciting developments in this field, there presently is no topical review which specifically focuses on the underlying physics and chemistry related to plasma-activated water. We focus specifically on the PAW generation, origin of reactive species present in PAW, its related analytical chemistry and potentially different mechanisms that regulate the bio-activities of PAW in different biotech-applications and their roles in determining PAW efficacy and selectivity. We then review recent advances in our understanding of plasma-water interactions, briefly outlining current and proposed applications of PAW in agriculture, food and biomedicine. Finally, we outline future research directions and challenges that may hinder translation of these technologies into real-life applications. Overall, this review will provide much needed insights into the fundamental aspects of PAW chemistry required for optimization of the biochemical activity of PAW and translation of this environment- and human-health-friendly, and energy-efficient strategy into real life applications.
Anti-aromatic compounds, as well as small cyclic alkynes or carbynes, are particularly challenging synthetic goals. The combination of their destabilizing features hinders attempts to prepare molecules such as pentalyne, an 8π-electron anti-aromatic bicycle with extremely high ring strain. Here we describe the facile synthesis of osmapentalyne derivatives that are thermally viable, despite containing the smallest angles observed so far at a carbyne carbon. The compounds are characterized using X-ray crystallography, and their computed energies and magnetic properties reveal aromatic character. Hence, the incorporation of the osmium centre not only reduces the ring strain of the parent pentalyne, but also converts its Hückel anti-aromaticity into Craig-type Möbius aromaticity in the metallapentalynes. The concept of aromaticity is thus extended to five-membered rings containing a metal-carbon triple bond. Moreover, these metal-aromatic compounds exhibit unusual optical effects such as near-infrared photoluminescence with particularly large Stokes shifts, long lifetimes and aggregation enhancement.
Singlet oxygen (1O2) is an excellent active species for the selective degradation of organic pollutions. However, it is difficult to achieve high efficiency and selectivity for the generation of 1O2. In this work, we develop a graphitic carbon nitride supported Fe single‐atoms catalyst (Fe1/CN) containing highly uniform Fe‐N4 active sites with a high Fe loading of 11.2 wt %. The Fe1/CN achieves generation of 100 % 1O2 by activating peroxymonosulfate (PMS), which shows an ultrahigh p‐chlorophenol degradation efficiency. Density functional theory calculations results demonstrate that in contrast to Co and Ni single‐atom sites, the Fe‐N4 sites in Fe1/CN adsorb the terminal O of PMS, which can facilitate the oxidization of PMS to form SO5.−, and thereafter efficiently generate 1O2 with 100 % selectivity. In addition, the Fe1/CN exhibits strong resistance to inorganic ions, natural organic matter, and pH value during the degradation of organic pollutants in the presence of PMS. This work develops a novel catalyst for the 100 % selective production of 1O2 for highly selective and efficient degradation of pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.