“…In recent years, increasing traffic loading has led to the exploration of high-performance asphalt binders. Several studies showed that modification of base asphalt binders enhances their physical and rheological properties, resulting in minimizing common types of distresses, such as fatigue, low-temperature cracking, and rutting deformation, encountered in asphalt pavements [ 1 , 2 , 3 , 4 ]. Recently, nanomaterials, due to their high functional density, high specific surface area, and strong absorption, have demonstrated a great potential to improve the properties of the binder, leading to high performance and prolonged service life of the pavement [ 5 , 6 ].…”