fields is breaking out, such as the Internet of Things (IoTs), big data, humanoid robotics, and artificial intelligence (AI). Nowadays, the rapid advancement of these functional electronic devices is transforming the way people communicate with each other and with their surroundings, which has integrated our world into an intelligent information network. Owing to that no electronics works without electricity, the processes of human informatization and intelligence depend on broad energy supplies and powerful power supports. In other words, electric power can be regarded as the flowing blood that keeps every components of the current society running normally and healthily. However, with the rapid consumption of conventional fossil fuels as well as the growing voice of environmental protection, the current energy structure and its supply status are facing unprecedented challenges. On the one hand, the overwhelming energy crisis and ecological deterioration have become huge bottlenecks restricting socioeconomic development.[1] Some serious situations may even worsen to the root of interstate interest conflicts or the disaster that threatens the survival of mankind. In this case, the transform of energy structure from scarce, pollution-prone, and irreproducible mineral resources to abundant, environmentally friendly, and renewable green energies is desperately required. On the other hand, the traditional centralized, immobile, and ordered energy supply patterns based on power plants are incompatible with the present development of functional electronics associated with individual person, which follows a general trend of miniaturization, portability, and low power. As the information age is coming, billions of things must be connected with sensors for various measurements, perceptions, controls, and data transmissions. [2] These mobile, human-oriented, randomly and massively distributed sensing networks also require the corresponding matched power supply system. Therefore, it turns out that the unreasonable energy structures as well as the mismatched supply pattern lead to the current development dilemma.Portable power supplies and self-powered systems are the most promising solutions for the above straits. For wearable power sources, one of the compromises is to choose small-size Integration of advanced nanogenerator technology with conventional textile processes fosters the emergence of textile-based nanogenerators (NGs), which will inevitably promote the rapid development and widespread applications of next-generation wearable electronics and multifaceted artificial intelligence systems. NGs endow smart textiles with mechanical energy harvesting and multifunctional self-powered sensing capabilities, while textiles provide a versatile flexible design carrier and extensive wearable application platform for their development. However, due to the lack of an effective interactive platform and communication channel between researchers specializing in NGs and those good at textiles, it is rather difficult to achieve fiber...
There is an increasing interest to develop a next generation of touch pads that require stretchability and biocompatibility to allow their integration with a human body, and even to mimic the self‐healing behavior with fast functionality recovery upon damage. However, most touch pads are developed based on stiff and brittle electrodes with the lack of the important nature of self‐healing. Polyzwitterion–clay nanocomposite hydrogels as a soft, stretchable, and transparent ionic conductor with transmittance of 98.8% and fracture strain beyond 1500% are developed, which can be used as a self‐healing human–machine interactive touch pad with pressure‐sensitive adhesiveness on target substrates. A surface‐capacitive touch system is adopted to sense a touched position. Finger positions are perceived during both point‐by‐point touch and continuous moving. Hydrogel touch pads are adhered to curved or flat insulators, with the high‐resolution and self‐healable input functions demonstrated by drawing, writing, and playing electronic games.
The detection of partial discharge through analysis of SF6 gas components in gas-insulated switchgear, is significant for the diagnosis and assessment of the operating state of power equipment. The present study proposes the use of a TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2, and the application of the anodic oxidation method for the directional growth of highly ordered TiO2 nanotube arrays. The sensor response of 10–50 ppm SO2 gas is tested, and the sensitive response mechanism is discussed. The test results show that the TiO2 nanotube sensor array has good response to SO2 gas, and by ultraviolet radiation, the sensor can remove attached components very efficiently, shorten recovery time, reduce chemical poisoning, and prolong the life of the components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.