Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This research explores the development and evaluation of breakfast cereals formulated from pearl millet (P-1) and finger millet (F-1) flours, with a focus on their nutritional composition and potential anti-obesity properties. The techno-functional properties were assessed, revealing that P-1 exhibited a bulk density of 0.40 ± 0.01 g/ml and a true density of 0.61 ± 0.03 g/ml, while F-1 showed a bulk density of 0.54 ± 0.03 g/ml and a true density of 0.65 ± 0.02 g/ml. The Carr index and Hausner ratio were significantly higher in P-1 (40.33 ± 0.41 and 1.68 ± 0.03, respectively) compared to F-1 (22.3 ± 0.3 and 1.31 ± 0.02, respectively). Both flours demonstrated comparable water absorption indices, but P-1 had superior foaming capacity and stability. Nutritional analysis indicated that P-1 contained 12.64% moisture, 6.02% fat, 10.29% protein, 63.94% carbohydrates, 2.38% ash, and 2.75% fibre, whereas F-1 had 8.92% moisture, 1.78% fat, 8.65% protein, 73.65% carbohydrates, 1.77% ash, and 4.04% fibre. Composite flours (PF-1, PF-2, PF-3) exhibited varying compositions: PF-1 had 9.86% moisture, 5.83% fat, 11.62% protein, 66.04% carbohydrates, 2.19% ash, and 3.03% fibre; PF-2 had 10.79% moisture, 3.87% fat, 10.01% protein, 68.97% carbohydrates, 2.05% ash, and 3.37% fibre; PF-3 had 9.87% moisture, 2.84% fat, 9.33% protein, 71.12% carbohydrates, 1.92% ash, and 3.74% Fiber. Antioxidant activity was higher in F-1 (80.63%) compared to P-1 (59.58%), with PF-1, PF-2, and PF-3 showing 64.84%, 70.14%, and 75.4%, respectively. Lipase and amylase inhibition capacities were 73.15% and 28.66% for P-1, 28.31% and 30.65% for F-1, and varied for composites: PF-1 (79.12% lipase, 46.41% amylase), PF-2 (50.75% lipase, 53.15% amylase), and PF-3 (39.51% lipase, 41.84% amylase). These findings underscore the distinct nutritional and functional properties of these flours, highlighting their potential in obesity management.
This research explores the development and evaluation of breakfast cereals formulated from pearl millet (P-1) and finger millet (F-1) flours, with a focus on their nutritional composition and potential anti-obesity properties. The techno-functional properties were assessed, revealing that P-1 exhibited a bulk density of 0.40 ± 0.01 g/ml and a true density of 0.61 ± 0.03 g/ml, while F-1 showed a bulk density of 0.54 ± 0.03 g/ml and a true density of 0.65 ± 0.02 g/ml. The Carr index and Hausner ratio were significantly higher in P-1 (40.33 ± 0.41 and 1.68 ± 0.03, respectively) compared to F-1 (22.3 ± 0.3 and 1.31 ± 0.02, respectively). Both flours demonstrated comparable water absorption indices, but P-1 had superior foaming capacity and stability. Nutritional analysis indicated that P-1 contained 12.64% moisture, 6.02% fat, 10.29% protein, 63.94% carbohydrates, 2.38% ash, and 2.75% fibre, whereas F-1 had 8.92% moisture, 1.78% fat, 8.65% protein, 73.65% carbohydrates, 1.77% ash, and 4.04% fibre. Composite flours (PF-1, PF-2, PF-3) exhibited varying compositions: PF-1 had 9.86% moisture, 5.83% fat, 11.62% protein, 66.04% carbohydrates, 2.19% ash, and 3.03% fibre; PF-2 had 10.79% moisture, 3.87% fat, 10.01% protein, 68.97% carbohydrates, 2.05% ash, and 3.37% fibre; PF-3 had 9.87% moisture, 2.84% fat, 9.33% protein, 71.12% carbohydrates, 1.92% ash, and 3.74% Fiber. Antioxidant activity was higher in F-1 (80.63%) compared to P-1 (59.58%), with PF-1, PF-2, and PF-3 showing 64.84%, 70.14%, and 75.4%, respectively. Lipase and amylase inhibition capacities were 73.15% and 28.66% for P-1, 28.31% and 30.65% for F-1, and varied for composites: PF-1 (79.12% lipase, 46.41% amylase), PF-2 (50.75% lipase, 53.15% amylase), and PF-3 (39.51% lipase, 41.84% amylase). These findings underscore the distinct nutritional and functional properties of these flours, highlighting their potential in obesity management.
This study investigates the potential of using rice, corn, and millet flour, as well as burdock root flour, as a fortifying additive in the production of gluten-free butter cookies. The control sample was a classic butter cookie recipe using a gluten-free mixture of rice, corn, and millet flour. Burdock root flour was added in varying proportions (5%, 10%, 15%) to the remaining recipe components, replacing them. The samples were evaluated based on physical and chemical indicators, including ash content, alkalinity, moisture content, wettability, and iron content. Organoleptic properties were also considered. The results showed an increase in iron and ash content compared to the control sample. Sample 3 was found to be the most successful based on physical and chemical indicators, while sample 1 was the best according to organoleptic indicators.
The use of wheat flour alone in the formulation of many products in Africa not only causes a large deficit in the balance of trade, but also nutritional problems, as it is poor in many nutrients. The search for solutions to these problems is prompting politicians to popularize substitution by cheaper and more readily available local products. Thus, the present article concern the physico-chemical and functional properties of flours formulated from coconut and wheat. Coconut pods were chopped, dried and ground in powder that was used to formulate the flours in association with wheat flour. Using the two-factor centered mixture design, we generated five formulations (F1 to F5) and then the functional, physical and nutritional properties were performed. Physico-chemical and functional properties revealed a variation in the various parameters with the substitution percentage. In fact, fiber, lipid, protein, and ash content, as well as energy density, increased with the percentage of coconut flour. The same phenomenon was observed with minerals. All the functional and physical properties were significantly (p˂0.05) improved by substitution. Principal component analysis (PCA) showed small-group correlation and similarity between some samples overall. These results show the need to partial substitute wheat with foods from other classes in order to improve the nutritional values and functional properties of derived products. In addition, they offer a way out for African policies to reduce wheat imports and thus retain foreign currency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.